60,361 research outputs found

    Non-equilibrium dynamics of an active colloidal "chucker"

    Full text link
    We report Monte Carlo simulations of the dynamics of a "chucker": a colloidal particle which emits smaller solute particles from its surface, isotropically and at a constant rate k_c. We find that the diffusion constant of the chucker increases for small k_c, as recently predicted theoretically. At large k_c the chucker diffuses more slowly due to crowding effects. We compare our simulation results to those of a "point particle" Langevin dynamics scheme in which the solute concentration field is calculated analytically, and in which hydrodynamic effects can be included albeit in an approximate way. By simulating the dragging of a chucker, we obtain an estimate of its apparent mobility coefficient which violates the fluctuation-dissipation theorem. We also characterise the probability density profile for a chucker which sediments onto a surface which either repels or absorbs the solute particles, and find that the steady state distributions are very different in the two cases. Our simulations are inspired by the biological example of exopolysaccharide-producing bacteria, as well as by recent experimental, simulation and theoretical work on phoretic colloidal "swimmers".Comment: re-submission after referee's comment

    Contact-eutectic-lens fabrication technique

    Get PDF
    Method enables use of crystal or semiconductor materials with selective spectral-response characteristics (ultraviolet, visible, or infrared wavelengths) in fabrication of contact lenses, reading glasses, and photographic processing equipment

    Study of proton radiation effects on solar vehicle electronic system

    Get PDF
    Radiation effects on electronic equipment of solar spacecraft - shielding requirement

    Towards developing an industry led educational framework using LEAN approach

    Get PDF
    The poor performance and inefficient manner in which the construction industry operates has been recognised through a variety of combined government and industry initiatives over the years. A major challenge towards improvement is recognised as lying with education and industry stakeholders actively creating closer and more effective relationships to facilitate a greater mutual understanding. The application of Information Technology (IT) systems can well enhance ‘Lean’ initiatives through improving process flow, reduction of the non-added value activities, better meet customers’ requirements and adding value which will increase the performance of the industry. This paper presents a project that is focused on developing an industry led framework for educational training programmes. The outcomes of two workshops organised with the industry that have resulted in a Continued Professional Development (CPD) training framework comprising of three distinct levels in terms of strategic, operational and technology aspects of that particular key area are discussed. The essence of this work is based on adopting the ‘Lean’ approach and adding value by identifying the IT skills gaps recognised ‘by the industry’ ‘for the industry’ and addressing them in developing training programmes

    A Dynamical Self-Consistent Finite Temperature Kinetic Theory: The ZNG Scheme

    Full text link
    We review a self-consistent scheme for modelling trapped weakly-interacting quantum gases at temperatures where the condensate coexists with a significant thermal cloud. This method has been applied to atomic gases by Zaremba, Nikuni, and Griffin, and is often referred to as ZNG. It describes both mean-field-dominated and hydrodynamic regimes, except at very low temperatures or in the regime of large fluctuations. Condensate dynamics are described by a dissipative Gross-Pitaevskii equation (or the corresponding quantum hydrodynamic equation with a source term), while the non-condensate evolution is represented by a quantum Boltzmann equation, which additionally includes collisional processes which transfer atoms between these two subsystems. In the mean-field-dominated regime collisions are treated perturbatively and the full distribution function is needed to describe the thermal cloud, while in the hydrodynamic regime the system is parametrised in terms of a set of local variables. Applications to finite temperature induced damping of collective modes and vortices in the mean-field-dominated regime are presented.Comment: Unedited version of chapter to appear in Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (Vol. 1 Cold Atoms Series). N.P. Proukakis, S.A. Gardiner, M.J. Davis and M.H. Szymanska, eds. Imperial College Press, London (in press). See http://www.icpress.co.uk/physics/p817.htm

    Massless scalar field in two-dimensional de Sitter universe

    Full text link
    We study the massless minimally coupled scalar field on a two--dimensional de Sitter space-time in the setting of axiomatic quantum field theory. We construct the invariant Wightman distribution obtained as the renormalized zero--mass limit of the massive one. Insisting on gauge invariance of the model we construct a vacuum state and a Hilbert space of physical states which are invariant under the action of the whole de Sitter group. We also present the integral expression of the conserved charge which generates the gauge invariance and propose a definition of dual field.Comment: 13 page

    The effect of market size structure on competition: the case of small business lending

    Get PDF
    Banking industry consolidation has raised concern about the supply of small business credit since large banks generally invest lower proportions of their assets in small business loans. However, we find that the likelihood that a small business borrows from a bank of a given size is roughly proportional to the local market presence of banks of that size, although there are exceptions. Moreover, small business loan interest rates depend more on the size structure of the market than on the size of the bank providing the credit, with markets dominated by large banks generally charging lower prices.Small business ; Bank size ; Bank loans ; Banking market

    Can a circulating light beam produce a time machine?

    Full text link
    In a recent paper, Mallett found a solution of the Einstein equations in which closed timelike curves (CTC's) are present in the empty space outside an infinitely long cylinder of light moving in circular paths around an axis. Here we show that, for physically realistic energy densities, the CTC's occur at distances from the axis greater than the radius of the visible universe by an immense factor. We then show that Mallett's solution has a curvature singularity on the axis, even in the case where the intensity of the light vanishes. Thus it is not the solution one would get by starting with Minkowski space and establishing a cylinder of light.Comment: 5 pages, RevTe

    Investigation of potential of differential absorption Lidar techniques for remote sensing of atmospheric pollutants

    Get PDF
    The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed
    • …
    corecore